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Under certain conditions, the motion caused in an annulus of fluid by rotating it 
about its (vertical) axis of symmetry and at the same time subjecting it to a 
radial temperature gradient has been shown by Hide (1958) to be mostly con- 
centrated in a narrow jet stream which meanders between the inner and outer 
cylindrical boundaries of the fluid in a regular wave pattern: this wave pattern 
has a small angular velocity relative to the cylindrical walls containing the fluid. 
A theoretical solution has been found by Davies (1959) which is valid in the main 
body of the fluid: this solution neglects viscosity (which is permissible except near 
the boundaries of the fluid), and is related to the absolute angular velocity of the 
wave pattern. The present paper introduces viscous boundary layers between the 
main body of the fluid and the cylindrical walls, in an attempt to find a relation 
between the angular velocity of the wave pattern and that of the walls. That this 
is only partially successful is due to the presence of the boundary layer at  the 
rigid surface at  the bottom of the fluid (which is rotating with the same angular 
velocity as the cylindrical walls): this layer is ignored in the present theory. In  
addition to this contribution towards a complete explanation of the steady 
motion, the theory describes qualitatively certain periodic oscilIations (vacilla- 
tion) which were observed by Hide in his experiments. 

1. Introduction 
The phenomena which are observed when an annular cylinder of fluid is rotated 

about its (vertical) axis of symmetry in the presence of a radial temperature 
gradient have been described in detail by Hide (1958). He finds that, for suf- 
ficiently small values of the parameter 

where g is the acceleration due to gravity, a, b, h are the dimensions of the 
apparatus as shown in figure 1, s2 is the angular velocity of the apparatus, Ap is 
the difference in densities of the working fluid at  the two cylindrical boundaries 
and po is the mean density, a motion develops which is mainly horizontal and 
which consists of a wave-pattern in which a clearly defined jet-stream can be 
observed. A typical surface pattern, consisting of three lobes, is shown in 
figure 2 :  the motion relative to the rotating cylinders is almost entirely in a 
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FIGURE 1. The dimensions of the apparatus. 

FIGURE 2. A typical three-lobed pattern. 
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narrow jet-stream, although weak vortices do exist in the positions shown. The 
wave pattern itself rotates slowly relative to the containing cylinders, with 
absolute angular velocity w?, such that 

0-i-2 ___ - gh 9 - 5.82 x lop2 i-2 (b2 - a2) C12 po ' 
where Ap is taken to be positive when the outer cylinder is hotter than the inner 
cylinder. He finds also that, as 0 increases, the number, m, of lobes in the wave 
pattern increases from a minimum value m,,, to a maximum value m,,, both of 
these quantities depending on the geometry of the apparatus. When 0 is increased 
still further, there occurs, in certain cases, a phenomenon which he calls 'vacilla- 
tion': here there is a periodic break-up of the pattern, as described below. First 
of all, the pattern develops a slight backward tilt at  the outer boundary; this then 
disappears, and a forward tilt develops which increases in magnitude until the 
jet-stream rolls up on itself, and a pattern of strong cyclonic vortices is formed. 
This, in turn, breaks down, and a new pattern similar to that of figure 2 is formed, 
and the whole cycle is repeated. (There is some doubt as to the length of time such 
a motion will persist if there is no external disturbance given to the fluid; since, 
however, the motion is observed to persist for several hundred revolutions of the 
apparatus after a single disturbance such as an accidental knock of the turntable 
supporting it, it is permissible to regard the phenomenon as persisting for very 
long periods of time.) In  a typical example, Hide finds that for a three-lobe 
pattern, where a = 1.06 cm, b = 4-85 cm, h = 10 cm, Ap/po = 11-8 x 
$2 = 4-7 1 rad./sec, a vacillation cycle develops whose period is 28 sec. 

Theoretical studies of the steady motion described above have been made by 
Rogers (1959) and Davies (1959). They find that, for small values of the para- 
meter 0, it  is permissible to neglect inertia and viscous effects in the main body of 
the fluid (so that the motion is essentially given by a balance between Coriolis 
forces and buoyancy forces), but that heat transfer is effected both by conduction 
and by convection. Using these approximations, Davies (1959) finds a solution 
for a pattern with m lobes which has a temperature distribution of the form 

T = {F(R) + $(R) cos [me - Y ( R ) ] }  (2p0 w ~ / a ~  gh) + a linear function of z, 

a pressure distribution of the form 

P = (2wPolm) W R )  + $(R) sin [me - Y R ) 1  
+ (Po + z )  $(R) cos [me - Y ( R ) ]  + a quadratic function of z ,  

and a transverse velocity distribution of the form 

In these expressions ( r ,  8, z )  are cylindrical-polar co-ordinates rotating with the 
fluid ( z  = 0 being the base of the apparatus); R = log, (r /b);  a. is the coefficient of 

N.B. Hide takes w w the relative angular velocity. 
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thermal expansion and K the thermometric conductivity of the fluid; Po is an 
arbitrary constant; and F ,  f, $ and ’€” are functions of R which can be determined 
once Y is known. As a particular example he takes 

then yo is a constant which is a measure of the transfer of westerly angular 
momentum (that is, the angular momentum in the same sense as that of the 
apparatus) from the outer to the inner boundary. Then he finds that 

$(R) = $1 sn { - *R$2(1+ 2y% k), 
4K2( 1 + k2) j = m2+ --, 

R, = log, (bla), 

4K 4Kk 
where ” = Ro( 1 + 2y;)B ’ “ = Ro( 1 + 2733 ’ R; 

l/eo = - ghAp/2wp0lc = mRo + vg/mRo, 
V ;  = {4I</( 1 + 27;)) {2E - K[(  1 - k2) - 3yi( 1 + kz)]), 

For m less than its maximum value, these equations are sufficient, when a, b, h, 
Ap/po and w are given, to determine first m, then k and then the functions F ,  f, $ 
in terms of Po and yo. The first insufficiency of the theory is immediately apparent, 
since w is not known: one of the objects of the present paper is to find a theoretical 
expression for the ratio (w - Q)/Q so that, if i2 is known, so is w. It will be found, 
in fact, that this ratio is a function of yo, and so is still insufficient to complete the 
theory: the form of the ratio, however, is found to be that of equation (l), which 
lends support to the theory, and which can therefore be used to obtain an empirical 
value for yo. A relation between the two constants Po and yo is also obtained. 

The method used to obtain these results is to try to insert viscous boundary 
layers between the main body of fluid in the motion found by Davies (which will 
be referred to as the inviscid solution throughout this paper) and the two cylindrical 
walls. That such layers must exist follows from the fact that in the inviscid solu- 
tion, slipping occurs a t  one or both cylindrical boundaries. If it is assumed that 
the motion is everywhere steady, it is possible to obtain two relations between the 
constants Po, yo and (w - Q)/i2,  as already mentioned. 

It is possible to extend the idea a little further by assuming a periodic variation 
with time in the viscous boundary layer. Since any disturbance to the fluid which 
may result in vacillation is likely to emanate from the walls, it  seems reasonable 
to expect such a periodic variation with time to exist, and to have a period com- 
parable with that of the vacillation cycle. A quantitative solution is not found, 
but a qualitative picture emerges of a forward tilting of the wave-pattern at the 
outer boundary which travels in the forward direction of motion of the fluid- 
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that is, a periodic rolling-up of the jet-stream is predicted, as occurs in one phase 
of the vacillation cycle. The slight backward tilting in another phase of the cycle 
is shown to be always present in the inviscid solution. 

The boundary layers at  the base of the fluid and at  the free surface are neglected 
in this paper; of these, it is only the former which is likely to be of any significance. 
The main flow, however, is not in this problem forced through the viscous boundary 
layers: instead the flow is superimposed upon a ‘solid rotation’ by buoyancy 
forces, so that the effect of the viscous boundary layers is that of a drag. Since, in 
the main flow, the fluid velocity relative to the apparatus increases linearly with 
height, that near the base is comparatively small: we can therefore expect the 
drag from the base boundary layer to be much smaller than that from the 
cylindrical walls. It will be found, however, that the solution of the equations for 
the boundary layers on the cylindrical walls cannot be found uniquely unless one 
boundary condition is known at  the base of these walls: as will be shown in more 
detail in 3 2, it is reasonable as a first approximation to ignore the base boundary 
layer on the average, and to take the velocity of the fluid relative to the apparatus 
to be zero at  the base. Because of the neglect of these effects, and hence of some 
of the highest-order derivatives in the equations of motion, it is not surprising 
that some arbitrary constants remain in the solution. The next step in the 
investigation of the flow must, of course, be to include the boundary layer on the 
base. 

2. Simplification of the equations of motion, Boundary conditions 
Using cylindrical-polar co-ordinates ( r ,  8, x )  which rotate with the wave pattern 

(i.e. with absolute angular velocity w ) ,  the equations of horizontal motion, 
continuity and heat transfer for a fluid are respectively 

au u l a v  -+-+-- = 0 ,  
ar r r 30 

and 
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where v is the kinematic viscosity, u is the radial component of the velocity of the 
fluid and v is its transverse component relative to the rotating axes. If we now 
introduce non-dimensional variables by means of the substitutions 

v = wa(Ap/p,) V ,  u = 9-*wa(Ap/p,) U, 
r = a( 1 + g-b), t = yo, z = h.2, 

where 9 = wa2/v is a Reynolds number, and then neglect terms of order 
9 - 4  or Ap/po compared with unity, and also a term of order 9-l compared with 
a term of order Ap/po (which is permissible near a boundary unless Ap/po is very 
small indeed), the first two of these equations reduce to 

2p,wv = aplar,  ( 2 )  
av 

and the last two reduce to 

(3) 

aT a2T 

at ar2 
- = K - .  

These approximations are a combination of those used in the usual boundary- 
layer theory, and those used in flows having a small Rossby number. The 
resulting equations imply: 

(i) The transverse velocity (imposed from outside-that is, from the main body 
of the fluid) causes a Coriolis force which requires a pressure field to balance it. 

(ii) The transverse variation of the pressure field is balanced by diffusion of 
vorticity, but will also be explicitly affected if there is any unsteadiness in the 
motion. 

(iii) The radial velocity component is due entirely to considerations of 
continuity. 

(iv) The temperature field in the region concerned is independent of the motion 
in the region: since, in the inviscid solution, the temperature boundary condition 
was properly satisfied, it  is quite sufficient to take T = constant throughout the 
region considered here. 

Substituting now from (2) into (3), we find that p satisfies the linear differential 
equation 

aZp 2@aP a3p 

at ar a aefV@, -- - --- 

and this is valid in the neighbourhood of the inner cylinder, r = a. In  the neigh- 
bourhood of the outer cylinder, r = b,  a must be replaced everywhere by b, and it is 
convenient to indicate the values of the dependent variables in this region by an 
asterisk. Hence p* satisfies the equation 

Once p is known, v can be found from ( 2 )  and u from (4) ; similarly v* and u* can be 
found from the corresponding equations with a replaced by b when p* is known. 
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The boundary conditions in the neighbourhood of the inner cylinder are as 

(i) Whenr = a, u = 0 and v = -a  (o-Q) for all 0 and t .  

follows. 

This is the condition of no slipping at the inner cylinder. 

(ii) When r - a -+ 00, v -+ vo(z) + wl(z) cos me + v2(z) sin me, (7 a )  
where vo, vl, v2 are given by Davies (1959),  and are of the form 

vo + v1 COB me + v2 sin me =  ma) {(Po + z /h) j  - #yo( 1 + 27;)) #1 q52 

+ if( 1 + 2734 $1 4zEsin (me - Yo) 

4- ( P o  + z/h) COS (me - ~ o ) ] ) Y  

using the notation already defined in the introduction to this paper, and writing 
Yo for (Y)R=-Ro. This is the matching condition between the boundary layer and 
the inviscid flow. 

( 9 a )  (iii) When z = 0, v = - a(w - Q) + q ( z )  cos me + v2(z) sin me, 

where vl(z) and v2(z) are the functions defined by equation (8a ) .  This condition 
is equivalent to saying that the part of the azimuthal velocity relative to the 
apparatus which is independent of 8 is zero outside the base boundarylayer. 
From the known form of the external flow this relative velocity is certainly 
much smaller than that near the surface (since it increases linearly with z ) ,  
and is also observed to be comparatively small in the experimental work. 
Further, if there exists a difference between the mean flow velocity and the 
velocity of the base, it seems likely that the base boundary layer would increase 
in thickness indefinitely, until it engulfed the flow. That this does not happen in 
many rotating flows already known (e.g. Stewartson 1957) is due to the fact that 
the boundary under consideration is that which originally causes the motion; in 
the present problem, the main motion is set up by another mechanism (the 
interaction of buoyancy and Coriolis force which are both body forces), so that the 
boundary acts only as a drag. 

The corresponding conditions in the neighbourhood of the outer cylinder are: 

(i) when r = b, u* = 0 and w* = - b ( o  - a) for all 0 and t ;  ( 6 b )  

(ii) when r - b  --f -03, v - + v ~ ( z ) + v T ( ~ ) c o s m B + v ~ ( z ) s i n m ~ ,  (7 b)  

where vg + v;" cos me + vz sin mB = ( q h b )  {(Po + z/h) j  + #yo( 1 + 2734 q51 
- 

+ (p0 + 217~) cog (me - Y,*)I), 
+ 2734 dl #,[sin (me - Yg) 

( 8 b )  

and 

(iii) when z = 0,  v* = - b ( o  - Q) + vT(z) cosme + $ ( z )  sinme, ( 9 b )  

where vT(z) and v;(z) are the functions defined by (8b) .  
The problem is therefore reduced to that of solving equations ( 5 ) ,  subject to the 

boundary conditions (6), (7) and (9) .  The solution will be discussed in the following 
sections. 
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3. The steady solution 
When all the variables are independent of time, equation (5a )  reduces to 

2wap a3p -_- a a 8 + V -  = 0 
ar3 ' 

Since the solution is periodic in 8, with wave-number m, we can expect a solution 
of the form 

This may be substituted into equation (lo), and then 

p ( r ,  8, z )  = p,(r, z )  +pl ( r ,  z )  eime +p,(r, x )  ecime. (11) 

a3po/ar3 = 0 giving p ,  = 2wp,[A,(z) + B,(z) (r - a)  + +C,(z) (r - a)2],  
and (2iwmIa) p ,  = va3p1/ar3, - (2iwm/a) p 2  = va3p2/ar3. 

These may be written 

a3p1/ar3 = p3ip,, a3p2/ar3 = -p3ipZ, where p = (2wm/va)). 

Now the equation a3p1/ar3 = p3ip, has solutions of the form e--ipr, e(43+i)Prl2 and 
e(-43+i)pr/2. The expression ( 1 l), after some manipulation, can be shown to be of 
the form 

p = 2wp,[A, + B,(r - a )  + +C,(r - a), + A,cos [me - p ( r  - a)] + A,sin [me - p(r  - a)] 

+ e43fi(r-u)/2{B1 cos [me + +p(r  -a)] + B, sin [me + +p(r - a)]} 

+ e--d3p@-u)/Z{C1 cos [m8 + +p(r - a)] + C, sin [me + +p(r - a)]}], 

where A,, A,, A,, B,, B,, B,, C,, C,, C, are all arbitrary functions of z. Since all the 
boundary conditions are on the transverse velocity, w, it  is more convenient to 
differentiate this with respect to r,  and use ( 2 )  to obtain 

w = Bo + Co(r- a) + F COB [ m 8 - , ~ ( ~ -  U) +a] 

+e~3~(T-u)lzGcos [mO+Qp(r-a) +p] 
+ e-d3p(T-a)/2H cos [me + +p(r  - a) + y], ( 1 2 a )  

where F ,  G, H ,  a, p, y are new arbitrary functions of z which are related to 
A,, A,, B,, B,, C,, C,. Similarly, in the neighbourhood of the outer cylinder, the 
transverse velocity is given by 

w* = Bg +Cg(r-  b )  = F* cos [mO-p*(r- b )  +a*] 

+ e43p*(r-b)/2G* cos [me + +p*(r - b )  +/I*] 
+ e-43p*(r-b)12H* cos [me + +p*(r - b)  + y*], P b )  

where F*, G*, H*, a*,/3*, y*arearbitraryfunctionsofz. Inthetwoequations (12 ) ,  
the constants p and p* are defined by 

p = (2wm/va) i ,  p* = (2wm/vb)f .  (13) 

It is now possible to apply the boundary conditions to the solutions (12). First 
of all, using (6a )  and ( 6 b ) ,  we find that 

B, = -~(@-!2), Bg = - b ( w - Q ) ,  
Fcosa+Gcos/3+Hcosy = 0, 

F*cosa*+G*cos/3*+H*cos y* = 0,  

Fsina+Gsinp+Hsiny = 0,  

F*sina*+G*sinp*+H*siny* = 0. 
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Applying the boundary conditions (7a )  and (7b) ,  it  is apparent, first of all, that 

G = 0, H* = 0. 

The foregoing equations then give 

= y ,  a* =/I*, F + H  = 0, F*+G* = 0. 

At this stage, the equations (12a) and (12b) have been reduced to 

v = - a(w - Q) + Co(r - a )  + F  cos [mO-p(r -a )  + a] 
- F e-438(7-a)'2cos [me + &p(r - a) +a], 

-F*e438*(r-b)/2cos [mO+&p*(r-b) +a*]. 

Comparing this with the forms (7 a )  and (7 b) ,  it is immediately apparent that it is 
convenient to take a boundary layer of finite thickness: a suitable position to 
choose as the edge of the boundary layer is where e-d3~(r-a)/2 (or ed3p'(r-b)/2) is 
negligible. This quantity is approximately 0.005 when r --a = S (or b - r = S*) if 

(14) 

V* = - b ( w - R ) + C : ( r - b ) + P * ~ ~ ~ [ m B - p * ( r - b ) + a * ]  

jd = p*s* = 2Tr. 

This is taken to give suitable values for S and S*. Then, when r - a  = 6, the 
boundary condition (7 a )  gives 

vo + v1 cos me + v2 sin m8 = - a(w - Q) + (27r/p) Co + F COB (me + a) ,  (15a) 

and when b - r = S*, the boundary condition (7 b)  gives 

WE + v; cosm0 + vg sinme = - b(w- R) - (2n/p*) C,* +P* cos (me + a*). (15b) 

It follows at  once that 

F cos a = vl, P sin a = w2, F* cos a* = v:, P* sin a* = vg, (16) 

where vl, v2, v:, vg are given in equations (8a )  and (8b ) .  The relations (16) deter- 
mine the constants F ,  a,  F*, a* completely, and the only arbitrariness left in the 
solution is in the constants C,, and C:. Still using the equations (15a)  and (15b) 
we have 

and 
-a(w-Q)+(2n/p)Co = vo = ( ~ / ~ a ) [ ( P o + ~ / h ) j - g y , ( l + 2 y ~ ) ~ $ 1 $ 2 1 ,  (17a)  

- b(w - Q) - (2n/p*) C,* = V; = ( ~ / m b )  [(Po + ~ / h ) j  + #yo( 1 + 2 ~ ; ) )  $1 $21. (17 b )  
Hence 

where c0 and (?: are constants. 

Applying the conditions (9a )  and (9b) ,  we see that Co and 6: are both zero; as 
stated before, however, the condition cannot be satisfied completely, as this 
would imply that w1 = v2 = v: = w t  = 0 when z = 0, and this is not in general 
true. It will be necessary, therefore, to regard this as an approximate condition 
and to satisfy it only on the average with respect to 8. When a solution has been 
found for the boundary layer near z = 0, this can be used to replace the condi- 

(27rlp) Go = Co + (Kjlmha) z ,  - (2n/p*) C$ = C$ + (Kj/mhb) z, 

Fluid Mech. 14 3 
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tions (9), and hence to give a better picture. Then the equations (17a) and (17b) 
yield the relations 

- a(o - Q )  = (+a) [ P o  j - ;Yo(l+ 2Y,2)* $1 $21 

- b ( o  - Q )  = (+b) [ P o  j + #Yo(l + 2Y,2)* 41 4 2 1 .  

(18a) 

( l a b )  and 

These are the two relations between (o - a), Po and yo referred to in the Introduc- 
tion. It is possible to eliminate Po from these relations, and to obtain the relation 

(b2- u2) (w - Q )  = - ( 3 K / r n )  yo( 1 + 2$)* 41 $2. (19) 

So (w - Q) is directly related, as would be expected, to yo, the measure of the 
angular momentum transfer. If yo is negative (as for the case of a transfer of 
westerly angular momentum towards r = 0, or towards the poles in the analogous 
case on a spherical earth), it  follows that w > Q, and this is observed in the 
experiment. Using the results for the main motion of the fluid which are sum- 
marized in the Introduction to this paper, (1 9) can be used to give the expression 

and this is to be compared with equation (I), the experimental result obtained by 
Hide (1958). Since the ratio (w - Q)/Q is small, it is permissible in equation (20) to 
put w / Q  = 1, and then the two equations are identical as long as 

3y0( 1 + 2734 42s0/2m = 5.8 x 

This can be regarded as an expression defining the quantity yo, and if y; is very 
small compared with unity, the equation becomes 

yo + mR$/400kK2so, (21) 

which is negative, since l/so = - ghAp/2wpo K is negative. 

constant Po; for, 
Note that, using equations (18a) and (18b) ,  it is also possible to evaluate the 

2KPO j /m  = - (a2 + b2) (w - Q )  

Hence, 

Using Davies's equations, summarized earlier in this paper, 

m/js, = R,[1+ O(k2,  r3l. 
So, for sufficiently small k, yo, (22) becomes 

(a2+b2)  (b-a)  
(62 - a2) (b + a) log,(b/a) + -12x  10-2--- + -0.1. 

(a2 + b2) 

(b2 - a2) 
Po + - 6 x 

There are as yet no experimental results available to check the accuracy of these 
values of Po and yo. 
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Using equation (2) and the first half of the boundary condition (6a) ,  we find that 

u = (mF/,ua) (cos [me -p(r  - a)  +a] - cos (me +a) 

+ e4/3?@--a)’2 cos [me + &(r - a) + a - +r] - cos (me + a - &)}, 

and similarly, near the outer boundary, 

u* = (mF*/p*b) {cos [me -,u*(r - b )  + a*] - cos (me + a*) 
+ e43?*(r-b)/2 cos [me + +,u*(r - b )  +a* + Q7r] - cos (me + cx* + an)}. 

The profiles of u and u* when r - a = 27r/p, r - b = - 27r/,u* are indicated in the 
schematic sketch in figure 3: here the circular boundaries are represented by 
straight lines and the width of the boundary layers is considerably exaggerated. 

‘ = a  (cold) 

FIGURE 3. Schematic diagram of the radial velocity at the ‘edge’ of the boundary layer 
and of the streamlines in the boundary layer. A is a point of maximum v at the ‘edge’ 
of the boundary layer. B is a point of minimum v at the ‘edge’ of the boundary layer. 
C is a point of zero u at the ‘edge’ of the boundary layer. 

Allowance has been made for the fact that, for values of 0 where the transverse 
velocity, v, in the inviscid flow is smallest, the exponential term in the expressions 
for u and v in this paper is relatively more important in spite of its small absolute 
magnitude: in these regions, therefore, the boundary layer may be wider than in 
the regions where the jet stream approaches the wall. This effect cannot easily be 
incorporated into the equations, but it can be shown that the qualitative effect 
is to displace one position of zero u as indicated in the diagram. The general 
directions of the streamlines are sketched in the figure, and are in reasonably good 
agreement with experimental observation. 

It is interesting to observe that the position of maximum transverse velocity at  
the ‘edge’ of the boundary layer defined in (14) is slightly upstream (relative to 
the jet stream) of the point where the jet stream meets the inner, cold boundary 
(given by u = 0 ) ,  but slightly downstream of the point where the stream meets 
the outer, hot boundary. This implies that the fluid is accelerated at the inner 

3-2 
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boundary and decelerated at the outer boundary. No explanation is at present
offered of this result, which is the opposite of that which would be expected at
first sight.

4. The unsteady case : solution periodic in time
Any disturbance generated in the motion must be transmitted to the fluid

through the boundary layer. If there exists, therefore, a natural frequency with
which periodic oscillations can persist in the boundary layer, it seems likely that
such oscillations will sometimes occur, and that they may be transmitted to the
main body of the fluid. We look, therefore, for a solution which varies periodically
with a frequency r-r radians per second. If this exists, there will be a solution of
equation (5a) in the form

p = po(r,  z) +p,(r, 2) eime +p,(r, 2) t+m8 +p3, (23)

where pO, p1 and p, are as in 5 3, and

p3 = eid[q,(r,  2) + ql(r, 2) eime  + q2(r, 2) e-ime]

+ ecid[Q,(r,  2) + Q1(r,  2) eimo  + Q2(r,  2) e-imS]. (24

Substituting this in equation (5a), we find that the functions q,,, ql, q2, Q,,, Q1, Q2
satisfy the equations

, ah 8th . x-4 a3Qo
c$ = vi@, -war = VW, (25)

~Q2+y!?!&
(26)

Equations (25) have solutions of the form

q. = eU+O d/(UPV) 7 e-(l+im4u/2v), and a constant,
Q. = ,$1-i) d(dW, e-@-i)  fdb/W, and a constant.

Also, equations (26) have solutions of the form

q1 = $1 y, &a r, eks r; q2 = e-4 r, e-4 r, e-h r;
Q1 = e-ii, T, e-&r, e-iE, r; Q2 = e&r, ezzr, e&r; >

here k,, k,, k, are roots of the cubic equation

k3 - (&r/v)  k - Biomlva = 0,

(27)

(28)

and E,, E,, E, are the complex conjugates of these quantities. It is convenient to
write

(a/v) = 37p2, p = (2wm/va)*, (29)

so that k satisfies the equation

k3 - 3irp2k - i,u” = 0. (30)

If we assume that the oscillation investigated here is connected with that of the
vacillation cycle described in the Introduction, we can use the values given there
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for one particular case: in this case we find that p = 14cm-l and 7 + 0.04 at the 
inner boundary, and the corresponding quantities at the outer boundary are 
p* = 8.5 cm-l, T,I* = 0.1. It seems reasonable, therefore, to find a solution for k as 
a power series in 7, and it is easy to verify that, if kg = ip3, then 

k = ko{l + rl + 0(rl3)}. 
So, neglecting terms of order 7, compared with unity, the roots of equation (30) are 

k, - p ~ - i p ,  k2 = +~(J3+11)+&~(1+72/3) ,  k3 = + ~ ( - 2 / 3 + 7 ) + i ~ ( 1 - 7 4 3 ) .  

1 8P3 
2wp0 ar ' 

Using these values in (28) ,  and using also equations (27 )  and (24), it can be seen 
that, if 

then 

= -- 

v, = Fo e(r-a) 4(av) cos {at + (r - a )  .J(a/2v)  +aoo} 

+ G  0 e - ( r -a )~~u~b)cos {a t -  ( r - ~ ) 1 / ( a / 2 v ) + , 8 ~ ~ }  
+ P, e-pq@+ cos {d + m8 - p(r  - a )  + a,} 
+ G, epq(r-a) cos {at - me + p(r  - a )  + ,8,} 
+ F , e ~ ~ ~ 3 + ~ ~ ~ r - u ~ ~ ~ ~ o s { a t + m 8 + + ( 1  + y 4 3 ) p ( r - a )  +a,} 

+ 4 e -p (43- ) (~ -@/2  cos {at + m8 + +( 1 - 7 4 3 )  p(r  - a )  + a,} 
+ G, eA43-q)(r-4/z cos {at - m8 - +( 1 - 7 43)  p ( r  - a )  + P3}, 

+ G,  e - ~ ( 4 3 + ~ )  (r-a)/l cos {at - mo - $ ( I +  rl 43 )  ,@--a) + P J  

where Fo, Fi,Fz, F3, Go, GI, G,, G3, aoo, a39 Boo, Pi, ,829 and 8 3  are all arbitrary 
functions of z, and p and 7 are defined in equation (29). Applying the boundary 
condition (7 a )  to the velocity v, it  follows that v, + 0 as r - a + 00, and hence 
Po = G, = F, = G3 = 0. Further, applying the condition (6a) ,  it follows that 
v3 = 0 when r = a, and so 

Go = 0, Fl+P3 = 0,  a, = a,, G,  = 0. 

The time-dependent part of the velocity is therefore given by 

v, = F, e-pT(7-U) cos {d + m8 - p(r  - a )  + a,} 
-P 1 e-p(~33--11)(r--a)/2~~~{at+m8+ &(l -y , /3)p(r -a)+a1} .  (31a) 

The corresponding expression for the time-dependent part of the velocity near 
the outer boundary is 

v$ = G~e~*q*(r-bf~os{r*t-m8+p*(r-b)+,8,*} 

-G~ep'(-\/3-'I')(r--b)~2~os{a*t -m8-+(1-7j*JS)p*(r- b )  +,8T}, (31b) 

where a*/v = 3 y * , ~ * ~ ,  p* = (Zwmlvb)). (32) 

Usually, of course, a* = (T, but at  this stage the theory does not require this extra 
condition. 

The boundary conditions (7 a )  and (7  b )  ensure that when ( r  - a )  or (b  - r )  are 
sufficiently large, both w, and v$ vanish. Since, however, 7 is very much smaller 
than +(43 - y), it follows that at  the 'edge ' of the steady boundary layer (defined 
in equation (14)), there is still a significant contribution from the first term in each 
of  equations (31 a )  and (31 b).  Any disturbance in the transverse velocity v, then, 
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at the outer boundary propagates as a forward travelling wave (relative to the 
direction of motion in the jet stream) which is sloping forward at least for large 
(b  - r ) .  This is indicated in figure 4. Similarly, at  the inner boundary, any distur- 
bance will be propagated as a backward travelling wave with a backward slope. 
It seems likely that, as these waves travel round the cylinders and at  the same 
time inwards towards the main body of the fluid (this is true at both boundaries), 

FIGURE 4. Wavefronts of disturbances in the boundary layers, moving into the fluid. 

there will be a tendency for the lobes of the jet-stream pattern to tilt, and finally 
to roll up on themselves as shown in figure 5, and as observed in one cycle of the 
vacillation phenomenon. In  fact, the present author has seen a cycle set up in the 
experimental work in Newcastle, in which a pattern very similar to that in 
figure 5 was periodically obtained, although the whole vacillation cycle did not 
in that case occur. 

The slight opposite tilt which occurs during another phase of the vacillation 
cycle may in fact be present always, since the inviscid solution itself has such a 
backward tilt. This is evident, since 

and this is the difference in the angle 8 between, say, the point where the jet 
stream touches the outer cylinder, and the point where it touches the inner 
cylinder. Since k is always positive, and in the present problem, yo is negative, it 
follows that Yo* is less than Yo-that is, there is a backward tilt to the whole 
pattern. 

The whole vacillation cycle is not quite complete on this theory, as there is no 
obvious reason why the pattern should go through the symmetrical position when 
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progressing from the rolled-up state to the backward tilt of the inviscid solution. 
But it is hardly to be expected that the present theory would account for this 
part of the cycle, since it is obviously unrealistic to treat the motion as basically 
that of Davies’s solution. 

FIGURE 5. The tilting of the wave pattern at the boundaries during one phase of the 
cycle of an oscillating system. 

For the same reason, it is hardly to be expected that the period, 2nla,  of this 
oscillation will be identical with that of the vacillation cycle; on the other hand, 
it is to be expected that the order of magnitude of the two periods will be the same. 
If we take a* = a, which is certainly the case for vacillation, and assume that the 
maximum valueof 7 (erg*) for which the phenomenon can occur is approximately 
0.1 (for larger values of 7, the contribution of the time-dependent part of the 
transverse velocity is negligible outside the boundary layer), then the minimum 
possible value of the period of oscillation is 

3nla = 30n/3v,u2 or 2 0 n / 3 v , ~ * ~ ,  
whichever is the greater. This suggests that the vacillation period is of order 

2 n / a  = (2On/3v)/(vb/2wm)$, 
and this is about 30 sec in the particular case mentioned in the Introduction. It 
must be remembered, however, that the theory assumes that 7 is small in the 
first place, so that this result may be built into the system. At least the result 
shows that there is no inconsistency occurring. 

If the tilt of the wave is very small, there will be a tendency for any disturbance 
to travel round and round the apparatus, remaining more or less within the 
boundary layer, instead of propagating into the fluid. A measure of the tilt at the 
inner and outer boundaries, respectively, are the quantities 

@ = palm = (2waz/vm2)* and a* = ,u*b/m = (2wb2/vm2)*. (33 )  
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If these parameters are sufficiently small, no significant fluctuations will occur in 
the main body of the fluid, and vacillation will not occur. If, in any given experi- 
ment, w is gradually increased from a small value, both @ and @* increase at 
first; but after a certain critical value, m suddenly increases and so @ and @* both 
decrease discontinuously. This occurs repeatedly until the maximum value of m 
has been reached; after this increases of w imply increases of @ and @* always. 
Hence, once m has reached its maximum value, there is a high probability that 
@ and @* will increase beyond their critical values and vacillation will occur. 
It is evident that @* is greater than @, and so disturbances near the outer 
boundary will be significant for smaller values of w than those near the inner 
boundary, and this is a possible reason for the earlier occurrence of oscillations in 
that region. 

5. The present state of the problem: general discussion 
The theory of this paper is intended to be only a stepping-stone to a fuller 

understanding of the wave-regime. In  this section an attempt is made to put it in 
perspective relative to the general problem, and for the sake of simplicity the 
discussion will be restricted to the case in which there is a net heat flow towards 
the centre of the apparatus. 

As long as the motion is steady, the main body of the fluid moves under a 
balance of Coriolis and pressure forces, as shown by Davies (1959), and the heat 
flow is partly by conduction and partly by convection. This flow forms a jet 
stream which meanders regularly between the inner and the outer cylindrical 
boundaries, and viscous forces may apparently be neglected in the main body of 
the fluid since, in Davies’s solution, the only singularities in the vorticity gradient 
occur as the boundaries, where slipping occurs. It is, therefore, necessary to 
presume the existence of boundary layers at  both cylindrical boundaries and at  
the bottom of the fluid. (At the free surface, there will also be a boundary layer, 
but the drag caused by the air above the liquid is certainly small, and if the 
apparatus has a cover, will be zero.) It is reasonable to suppose that this would 
give a complete solution to the problem, although a uniqueness theorem is not at  
present available. 

The present paper deals with the boundary layers at  the cylindrical walls, and 
it has been found that some progress towards the complete solution has been 
made, but that a third relation, in addition to the equations (18), is needed in order 
to determine the constants of the problem. In fact, even more is required, since the 
constant yo in these equations occurs originally when Davies assumes a certain 
form (yo q5 = d Y / d R )  for the relation between q5 and ‘Y. It is desirable, therefore, 
to obtain, from a discussion of the boundary layer, conditions which will determine 
the form of this relation uniquely. A further disadvantage of Davies’s solution 
as it stands is that it assumes a basic linear distribution of temperature in the 
vertical: Sullivan (1960) has extended his work and considers a more general 
distribution, but for a complete solution it is obviously necessary to predict, 
rather than to specify, such a distribution, and so far this has not been possible. 

Another approach to that described is suggested by the result found in this 
paper that the boundary layers are thickest in the regions between the points 
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where the jet stream touches the boundaries. This implies that viscous forces are 
more important in the slow vortex regions than in the jet stream, and it may be 
worth looking for a solution of the viscous equations in these regions and 
attempting to match them to the solution obtained by Rogers (1959) for the jet 
stream itself. 

The vertical component of velocity has been ignored throughout: in fact it can 
be shown to be zero in the first approximation in the inviscid solution. It seems 
probable that fairly large vertical velocities do exist, however, and it may be that 
they are in the boundary layers discussed here. This seems a possibility as a means 
of producing the linear temperature gradient, on which all other variations are 
superposed, which was used by Davies. Further, such a vertical motion in the 
neighbourhood of the walls would help to explain the various energy exchanges in 
the fluid. On the other hand, it may be that all the vertical motions occur in the 
slow vortex regions. Here, then, is another promising topic for investigation. 

The stability of the main motion has been discussed by Davies in the same 
paper, and he predicts results which agree with experiment. He cannot, however, 
consider the effects of disturbances from outside (such as a momentary change in 
angular velocity of the apparatus, which can easily occur), since such disturbances 
must be transmitted through viscous forces. It has been shown in the present 
paper that for small values of @ and @* (defined in equations (33)) it is unlikely 
that such disturbances will seriously affect the stability of the steady motion in 
the main fluid: this corresponds to comparatively small w ,  and m less than its 
maximum value. When m = m,,, however, an increase in w leads first to a small 
oscillation of the wave pattern near the outer boundary, and then, if w is increased 
still further, to a periodic ‘rolling-up ’ of the pattern similar to that observed in 
the vacillation cycle. This is in complete agreement with experiment, and suggests 
that the main part of the flow in the vacillation cycle, if it  may be taken to be 
inviscid, may be considered as a forced oscillation of the inviscid steady solution. 

The present paper, then, is a single step in the process of building up a complete 
picture of the motion: the next step is probably to look for a solution for the 
boundary layer on the bottom of the fluid. Other approaches have, however, been 
shown to be possible, and it may be that these may be more amenable to analysis. 
Once a complete solution has been built up, using the various component parts 
which are gradually being developed at present, it should be possible to produce 
a unified theory which covers the whole problem; at  least, such a result would be 
highly desirable. At  present, however, we are a long way from this conclusion. 
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